
Jeff Froggart
froggajn@behp72.marconicomms.com

Shlaer-Mellor User Group Conference

September 1998

Islands of OOA

• Legacy systems and Shlaer-Mellor OOA
• Background
• The Interworking problem
• Domain Charting
• Bridging to non-OOA software
• Counterparting to non-OOA software
• Mapping Bridging modes
• Handling failures and errors

Contents

Legacy systems and Shlear-Mellor OOA

The Shlear-Mellor method is often perceived to be incompatible
with legacy software systems

Typical perceptions :-

• Shlear-Mellor is a "pure" technique
• "Thou shalt not pollute a Shlear-Mellor model"
• Needs a green field development
• Shlear-Mellor systems are slow
• "It's not REAL OOA!"

Background
• These are my own views!
• I'm not very up to date with latest OOA
• Our application of OOA has been cautious and practically

orientated
• Architecture and Framework.

• Architecture - used to map OOA to implementation
• Framework - Defines a set of interfaces and development
 process for OOA

The Interworking problem

• Large amount of existing (working!) software
• Emerging defined interfaces and system design
• Natural split off between EMs (Element Management) and

NCL (Network Level Control)
• Large amount of common functionality
• Desire to partition system
• Desire to make use of common software elements
• Desire to make use of newer implementation technologies

The EM-OS project circa 1994

Initial solution
• Parallel development of a green field Shlear-Mellor

replacement EM-OS
• Problems

• Cost!
• Low buy in from existing development teams
• Difficulty in "proving" the techniques
• Skill base problems

Current "Framework" solution
• Provides an OOA aware framework as an extension of the

OOA architecture
• Provides the possibility of "OOD'ed" domains as an

alternative to OOA domains
• Connects these "Islands of OOA" into the legacy system

via "Interface domains"
• Interface domains straddle the OOA and legacy system

worlds to bridge them

EM-OS block diagram

inheritance interface

Common services (eg. EHS, AS) ObjectStore

Network Control Layer (NCL) Network Control Layer (NCL)

SM EM
STUB

S
M

E
M

A
C
C
E
S
S

E
M

S
M
A

E
M

S
L
A

E
M OMS IPC interface

Object Management System (OMS)

Framework IPC interface

inheritance interface

Common services (eg. EHS, AS) ObjectStore

Network Control Layer (NCL) Network Control Layer (NCL)

SM EM
STUB

S
M

E
M

A
C
C
E
S
S

E
M

S
M
A

E
M

S
L
A

E
M OMS IPC interface

Object Management System (OMS)

Framework IPC interface

EM context diagram
The external interfaces with which the SM EM
interacts are shown below. This diagram is typical for
all the element managers within the EM-OS system

SM Element
Manager

Event Handling
Subsystem
(EHS)

External
Link
Interface
(ELI)

Application
Services
(AS)

Permanent
Remote
Logon
(PRLO) Network

Control
Layer
(NCL)

SM
Network
Element
(NE)

AETable

SM Element
Manager

Event Handling
Subsystem
(EHS)

External
Link
Interface
(ELI)

Application
Services
(AS)

Permanent
Remote
Logon
(PRLO) Network

Control
Layer
(NCL)

SM
Network
Element
(NE)

AETable

Framework concepts
• Database/process mapping
• Signals and Event/Response pairs
• Counterparting
• Sync Services
• Domain Interface (DIF) Objects
• Domain Stubs
• Interface Domains

Framework domain variants
• "Full" Shlear-Mellor OOA domains using I-OOA and ASL
• Skeleton based OOA domains, implemented with C++

actions
• Full C++ OOD domains
• User interface OOD domains
• Interface OOD domains

Domain Charting
• Bound the domain chart to the legacy software's

requirements
• By interactions between interface domains and the legacy

interfaces
• By defining any implementation domains from the legacy

software - these can then have either

• a direct bridge mapping
• an associated interface domain

Example domain chart

Audit

System
Coordination

Resource Access
and Allocation

Text And
Mapping

Message Set
Translator

SM

Equipment Alarms

Synchronisation
Performance

SM User Interface

Database
Upgrade

Generic
User Interface

Logging
Software
Architecture

OSI Comms

SL-GMS HP-UX

TeleUse ObjectStore

Third party domains

Network Control
Layer Interface

External Link
Interface

Application Services
Interface

Event Handling
Subsystem Interface

Application domains

Service domains

Interface domains

code generatednot code generated

code generatednot code generated

Software
Download

PRLO
Interface

Archiving

SM Interface

Performance
Interface

NSAP
Configuration

Bridging to non-OOA software
• Interface domains provide the services required to support

the bridging between the OOA and legacy software.

• They map the OOA concepts of the Framework
Architecture to the legacy's IPC and C++ method call
interfaces.

Counterparting to non-OOA software

• Object instances must be mapped from the legacy
software's naming method (text based) to the Framework
Architecture's numerical counterpart ids.

• The naming service is one of the functions provided by an
interface domain.

• Creation threads need reporting and may need
synchronising

• Uniqueness of counterpart ids must be maintained

• Identifying attributes in the legacy system must be defined

Mapping Bridging modes
• Often need to map synchronous blocking calls in legacy

system to asynchronous event/response pairs (non-
blocking) in the Framework domains

• Signals from Framework domains are often converted to
closed calls in the legacy system. The interface domain
collecting the returned information for the naming server

Handling failures and errors
• Failure modes may be different between the legacy

software and the OOA architecture (Framework)

• It may be necessary to convert error status values to
Framework error events

• It may be necessary to convert error signals or traps to
reply statuses on event responses in the Framework domain

Conclusions
• Shlaer-Mellor OOA can be incorporated into existing legacy

software systems. The EM-OS OOA "Framework" is one such
solution.

• The legacy software can make use of OOA through "Islands of
OOA" sitting in a "Framework" sea.

• A more flexible approach to Shlaer-Mellor domains can allow
OOA to "see" legacy software through "Interface domains".

Conclusions
• If the OOA to implementation translation would lead to

unacceptable performance then the use of OOD within an OOA
Framework can be used as an alternative to hand coding or
providing multiple translations.

• Investment in architectural software can be exploited not only in
Shlaer-Mellor OOA based software but can also act as an
infrastructure for OOD developed "Domains".

Jeff Froggart
froggajn@behp72.marconicomms.com

Shlaer-Mellor User Group Conference

September 1998

Islands of OOA

